
OO Verification
Research Results

John Joseph Chilenski
Associate Technical Fellow

Boeing Commercial Airplanes

July 27, 2005

Page 2

Background

• Boeing is conducting a three phase research project into the
verification of object-oriented technology (OOT)

• Phase I was a survey of current OOT verification practices in
use within commercial aviation projects

– Results were presented as part of the “OO ?” discussion
earlier today

• Phase II is an investigation into the data coupling and control
coupling (DC3) aspects of OOT

– Results to date will be presented in this discussion

Page 3

Background (continued)

• Phase III will be

– An investigation into the adequacy of structural coverage
analysis done at the object code level instead of the source
code level in OOT

– Identification of concerns and open issues concerning OOT
software verification that identify issues requiring further
research

Page 4

Agenda

• Coupling = Dependence

• Object Oriented Issues
• Inheritance
• Aggregation
• Association
• Polymorphism

– Static Dispatch
– Dynamic Dispatch

Page 5

Coupling = Dependence

• Given the material in DO-178B, DO-248B FAQ#9 & FAQ#67 and
CAST-19, we can conclude that the intent of the structural
coverage analyses of the confirmation of DC3 is to:

• Provide an objective assessment (measure) of the
completeness of the requirements-based tests of the
integrated components

– Demonstration of the presence of intended interactions
(function) between those components

• Support the demonstration of the absence of unintended
interactions (function) between those components

• This indicates that the confirmation of DC3 is specifically targeted
at the integration process and its tests

Page 6

Coupling = Dependence

• Integration focuses on dependencies and interfaces between
components

• Semantic dependence between two program points has been
shown to be uncomputable in the general case

• In standard CS usage, multiple components can be
• Independent (uncoupled)
• Dependent (coupled)

– Control Dependent
– control coupled

– Data Dependent
– data coupled

– Both

• Control and data dependence have been shown to be conservative
approximations of semantic dependence

Page 7

Coupling = Dependence

• In standard CS usage, a data
dependence exists between two
components if one component defines a
data object and the other component
uses that definition of the data object
under some operational scenario
• The data user is dependent on the

data definer
– D is data dependent on A

because of C
– D is data dependent on B

because of Y

procedure A is
begin

B;
if C then

C := Something;
D;

end if;
X := Something_Else;

end A;
procedure B is
begin

Y := X * Z;
end B;

procedure D is
begin

if C and Y > 0 then
Z := 0;

else
Z := Z + 1;

end if;
end D;

Page 8

Coupling = Dependence

• In standard CS usage, a control
dependence exists between two
components when the execution of
one component depends on the other
• One component calls the other

under some operational scenario
– The callee is dependent on the

caller
– B is control dependent on A

because A calls B
– D is control dependent on A

because A conditionally
calls D

procedure A is
begin

B;
if C then

C := Something;
D;

end if;
X := Something_Else;

end A;
procedure B is
begin

Y := X * Z;
end B;

procedure D is
begin

if C and Y > 0 then
Z := 0;

else
Z := Z + 1;

end if;
end D;

Page 9

Coupling = Dependence

• One component defines the data
objects that determine the execution
sequence taken by the other
component under some operational
scenario
– This is just a special form of data

dependence where the use of the
data object is in a decision that
determines whether the callee is
called or not
– D is control dependent on A

because of C
– D is control dependent on B

because of Y

procedure A is
begin

B;
if C then

C := Something;
D;

end if;
X := Something_Else;

end A;
procedure B is
begin

Y := X * Z;
end B;

procedure D is
begin

if C and Y > 0 then
Z := 0;

else
Z := Z + 1;

end if;
end D;

Page 10

Coupling = Dependence

• Verification of a data dependence
can be accomplished by execution
of a definition-use-association
(DUA)
• A DUA for an object X (dX, uX, X)

is formed by a pair of
statements:
– A definition statement (dX)

where X is given a value
– A use statement (uX) where

the value given to X in dX is
used

• (A.5, D.3, C)
• (B.3, D.3, Y)

procedure A is
begin

B;
if C then

C := Something;
D;

end if;
X := Something_Else;

end A;
procedure B is
begin

Y := X * Z;
end B;

procedure D is
begin

if C and Y > 0 then
Z := 0;

else
Z := Z + 1;

end if;
end D;

Page 11

Coupling = Dependence
• Verification of a control dependence can

either be accomplished by execution of a
DUA or call-association
• A call-association between two

components A, B, (A, c, B, p) is
formed by
– A call site c (a statement in A

where B is called), and
– A predicate p that identifies the

conditions under which the call
will occur

• (A, A.3, B, A.entered)
• (A, A.6, D, A.entered and C.A.4)

• (A.5, D.3, C)
• (B.3, D.3, Y)

procedure A is
begin

B;
if C then

C := Something;
D;

end if;
X := Something_Else;

end A;
procedure B is
begin

Y := X * Z;
end B;

procedure D is
begin

if C and Y > 0 then
Z := 0;

else
Z := Z + 1;

end if;
end D;

Page 12

Coupling = Dependence

• These analyses are standard in compiler optimization

• Coverage of DUA’s has been looked at for over 20 years
• Data flow coverage

• Coverage of inter-procedural/inter-class DUA’s has been
looked at as an integration testing adequacy criterion for over 15
years (inter-procedural) and is emerging for OOT (inter-class)

• Commercial tools are becoming available to perform these
analyses
• Including the coverage analysis

• Coverage of call associations requires further work

Page 13

Object Oriented Issues –
Inheritance, Aggregation, Association

A

B

C

D

E

F

G

H

I

I
I

As
As

As
As

As

As

As

As

As

As

Ag

Ag

Ag

Object Relation Diagram (ORD)
I – Inheritance
Ag – Aggregation
As – Association

Page 14

Object Oriented Issues – Inheritance

• The parent class(es) should be tested before the child class

• The hierarchical integration testing (HIT) methodology can be
used to determine which parts of the parent need to be tested
before which parts of the child

• This is the last relationship which should be stubbed
– These are the most complex stubs

Page 15

Object Oriented Issues – Aggregation

• Objects of one class incorporate objects of other class(es) as
attributes

• The encapsulated class should be tested before the
encapsulating class
• Only in the case of circular dependencies will stubs be needed

Page 16

Object Oriented Issues – Association

• Call – one of A’s methods calls one of B’s methods
• Access – one of A’s methods accesses one of B’s attributes
• Parameter – one of A’s methods contains a parameter of type B

• The called class should be tested before the calling class
• Only in the case of circular dependencies will stubs be needed

– Apparently quite common

• In an ORD, this is considered the weakest form of dependency
• This relationship should be broken/stubbed first

– Least complex stubs
• Many different weighting functions have been published

– Break the one which requires the fewest stubs

Page 17

Object Oriented Issues – Polymorphism –
Static Dispatch

• With static dispatch, each reference resolves to a single entity
(object or method)
• This is what we are used to in procedural / imperative

programming

• Each call site resolves to a single call association

• Only a single set of DUA’s exist

• They can all be tested as usual

Page 18

Object Oriented Issues – Polymorphism –
Dynamic Dispatch

• With dynamic dispatch, each reference resolves to a set of
possible entities (objects or methods)
• This is the famous pointer problem in C/C++

• Each call site resolves to a set of possible call associations

• Multiple sets of DUA’s exist
• One for each possible call association

• Adequate testing of polymorphism is an active research area
• No definitive answer yet

Page 19

Object Oriented Issues – Polymorphism –
Dynamic Dispatch

• Multiple approaches have been suggested

• Every dispatch site has been executed and every possible
dispatch target has been executed
– Every possible object binding and every concrete method
– Every possible object/method binding

– “Flattened class” methods / dispatch table
– Recommendation in the OOTiA Handbook

• For each dispatch equivalence class, every dispatch site has
been executed and every possible dispatch target has been
executed

Page 20

Object Oriented Issues – Polymorphism –
Dynamic Dispatch

• For each dispatch equivalence class, every dispatch site has
been executed and every dispatch target has been executed
from at least one of those sites

• Every possible dispatch target has been executed from every
dispatch site
– Every possible object binding and every concrete method
– Every possible object/method binding

– Researchers agree this is probably “safe”
• From the CS perspective

– Researchers agree this is generally intractable

Page 21

Conclusion

• Much work left to do

• Report due out before the end of the year
• May not have the polymorphism problem solved

• Stay tuned …

	OO Verification Research Results
	Background
	Background (continued)
	Agenda
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Coupling = Dependence
	Object Oriented Issues – �Inheritance, Aggregation, Association
	Object Oriented Issues – Inheritance
	Object Oriented Issues – Aggregation
	Object Oriented Issues – Association
	Object Oriented Issues – Polymorphism – Static Dispatch
	Object Oriented Issues – Polymorphism – Dynamic Dispatch
	Object Oriented Issues – Polymorphism – Dynamic Dispatch
	Object Oriented Issues – Polymorphism – Dynamic Dispatch
	Conclusion

